molécule et la Fig. 2 la structure. Les numéros attribués aux atomes sont indiqués sur la Fig. 1.

Littérature associée. Structure du N-(4,6-diméthylpyridin-2-yl)-3-(3,5-di-tert-butyl-4-hydroxybenzyli-

pynam 2-yi-5 (5,5-ai terr outy) + hydroxy ocheyn dényl)pyrrolidin-2-one (Rodier, Robert, Robert-Piessard & Le Baut, 1991). Structure du N-(4,6-diméthylpyridin-2-yl)-3-phényl-propènamide Ehydrate (2/1) (Rodier, Robert-Piessard & Le Baut, 1990). Composés anti-inflammatoires non acides: activité des N-(4,6-diméthylpyridin-2-yl)benzamides et de composés dérivés (Robert-Piessard, Le Baut, Courant, Brion, Sparfel, Bouhayat, Petit, Sanchez, Juge, Grimaud & Welin, 1990). Nouveaux dérivés du benzopyrane, leur procédé de préparation et les compositions pharmaceutiques qui les contiennent (Le Baut, Babingui, Robert, Renard & Renaud de la Faverie, 1991).

Références

- B. A. FRENZ & ASSOCIATES, INC. (1982). Structure Determination Package, College Station, Texas, EU, et Enraf-Nonius, Delft, Pays-Bas.
- JOHNSON, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- LE BAUT, G., BABINGUI, J. P., ROBERT, J.-M., RENARD, P. & RENAUD DE LA FAVERIE, J. F. (1991). Brevet n° 91-02799. Adir et Compagnie. France.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCO, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
- ROBERT-PIESSARD, S., LE BAUT, G., COURANT, J., BRION, J.-D., SPARFEL, L., BOUHAYAT, S., PETIT, J.-Y., SANCHEZ, R.-Y., JUGE, M., GRIMAUD, N. & WELIN, L. (1990). Eur. J. Med. Chem. 25, 9–19.
- RODIER, N., ROBERT, J.-M., ROBERT-PIESSARD, S. & LE BAUT, G. (1991). Acta Cryst. C47, 2684-2686.
- RODIER, N., ROBERT-PIESSARD, S. & LE BAUT, G. (1990). Acta Cryst. C46, 1747-1749.

Acta Cryst. (1991). C47, 2688-2690

Structure Cristalline d'un Nouvel Anti-inflammatoire Non Acide, N-(4,6-Diméthylpyridin-2-yl)(furan-2-yl)carboxamide

PAR N. RODIER

Laboratoire de Chimie minérale, Faculté des Sciences pharmaceutiques et biologiques, 5 Rue J.-B. Clément, 92296 Châtenay-Malabry CEDEX, France

J. M. CENSE

Laboratoire d'Informatique chimique, ENSCP, 11 Rue Pierre et Marie Curie, 75231 Paris CEDEX 05, France

ET J.-M. ROBERT ET G. LE BAUT

Laboratoire de Chimie thérapeutique, Faculté de Pharmacie, 1 Rue Gaston Veil, 44035 Nantes CEDEX, France

(Reçu le 18 avril 1991, accepté le 14 juin 1991)

Abstract. $C_{12}H_{12}N_2O_2$, $M_r = 216\cdot 2$, monoclinic, $P2_1/n$, $a = 7\cdot196$ (1), $b = 10\cdot439$ (1), $c = 14\cdot791$ (1) Å, $\beta = 97\cdot97$ (1)°, $V = 1100\cdot4$ (4) Å³, Z = 4, $D_x = 1\cdot305$ Mg m⁻³, λ (Cu $K\overline{\alpha}$) = 1.5418 Å, $\mu = 0.70$ mm⁻¹, F(000) = 456, T = 293 (1) K, R = 0.036for 1433 independent observed reflections. Both rings are planar and the whole molecule approximately planar. The least-squares planes of the two rings make an angle of 6.6 (3)°. In the amide group, there is a delocalized orbital which partly interacts with the π electrons of the two rings. The intramolecular N(7)—H(7)…O(10) [2.668 (2) Å, 108 (2)°] and C(3)— H(3)…O(14) [2.927 (2) Å, 120 (2)°] hydrogen bonds form two pseudo rings and contribute to the planarity of the molecule. The molecules are associated in pairs. In each pair, they are related by a centre of symmetry and linked together by two weak C(13)—H(13)···O(14ⁱ) (i: 1-x, 1-y, 1-z) hydrogen bonds [3.316 (2) Å, 149 (2)°].

Partie expérimentale. Produit recristallisé dans l'éther isopropylique. Cristal prismatique: $0,13 \times 0,16 \times$ 0,34 mm. Dimensions de la maille déterminées avec 25 réflexions pour lesquelles $13,14 \le \theta \le 26,85^\circ$. Diffractomètre Enraf-Nonius CAD-4. $0,023 \le$ $(\sin \theta)/\lambda \le 0,573$ Å⁻¹. $0 \le h \le 8, 0 \le k \le 11, -16 \le l$

0108-2701/91/122688-03\$03.00

© 1991 International Union of Crystallography

 \leq 16. Réflexions de contrôle de l'intensité: $\overline{2}0\overline{2}$, 330 et $30\overline{3}$. Variations non significatives de *I* au cours des mesures. 1726 réflexions indépendantes mesurées, 293 inobservées $[I \leq 3\sigma(I)]$. Méthodes directes, programme MULTAN11/82 (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982). H des CH₃: série de Fourier des ΔF . Autres H: positions calculées. Affinement basé sur les F, programme à matrice complète. Facteurs de diffusion des International Tables for X-ray Crystallography (1974, Tome IV, pp. 99, 149). Paramètres affinés: x, y, z de tous les atomes et β_{ij} de C, N et O. R = 0.036, wR = 0.049, S = 1.75, $w = 1/[\sigma^2(F) + 0.02F + 1.0]$, $(\Delta/\sigma)_{\text{max}} = 0.05$, $\Delta\rho_{\text{max}} = 0.21$ (3), $\Delta\rho_{\text{min}} = -0.11$ (2) e Å⁻³. Programme de calcul du système $(\Delta/\sigma)_{\rm max} = 0.05,$ SDP (B. A. Frenz & Associates, Inc., 1982). Fig. 1: programme ORTEPII (Johnson, 1976) et Fig. 2: programme MOLDRAW (Cense, 1989).

Afin de vérifier l'existence des liaisons C-H-O mentionnées ci-dessus, les charges portées par les atomes de la molécule ont été calculées par la méthode AM1 (Dewar, Zoebisch, Healy & Stewart, 1985) à l'aide du programme MOPAC (Stewart, 1983). Ce calcul montre la présence sur H(3) et sur H(13) de charges positives égales l'une et l'autre à 0,181 et de charges négatives sur C(3) et sur C(13) valant respectivement -0,204 et -0,100, l'unité étant la valeur absolue de la charge élémentaire.

Les trois atomes d'hydrogène liés à C(15) occupent chacun deux positions approximativement symétriques l'une de l'autre par rapport à la liaison C(4)—C(15). Les taux d'occupation des deux positions sont égaux aux incertitudes près.

Les coordonnées atomiques relatives et les facteurs de température isotropes équivalents sont rapportés dans le Tableau 1,* les principales distances interatomiques et les angles des liaisons dans le Tableau 2. La Fig. 1 représente la molécule vue en perspective et la Fig. 2 une vue stéréoscopique de la structure. Les numéros attribués aux atomes sont indiqués sur la Fig. 1.

Tableau 1. Coordonnées atomiques relatives, facteurs de température isotropes équivalents et écarts-type

$B_{eq} = (4/3)[a^2\beta_{11} + b^2\beta_{22} + c^2\beta_{33} + (ab\cos\gamma)\beta_{12} + (ac\cos\beta)\beta_{13} + (bc\cos\alpha)\beta_{23}].$					
	x	у	Ζ	$B_{eq}(\text{\AA}^2)$	
N(1)	0,7892 (2)	1,0830 (1)	0,50803 (8)	3,91 (3)	
C(2)	0,7245 (2)	0,9727 (2)	0,4705 (1)	3,64 (3)	
C(3)	0,6744 (2)	0,9542 (2)	0,3774 (1)	3,94 (3)	
C(4)	0,6912 (2)	1,0568 (2)	0,3199 (1)	4,05 (3)	
C(5)	0,7608 (2)	1,1710 (2)	0,3583 (1)	4,37 (3)	
C(6)	0,8075 (2)	1,1816 (2)	0,4521 (1)	4,03 (3)	
N(7)	0,7121 (2)	0,8779 (1)	0,53668 (8)	4,11 (3)	
C(8)	0,6505 (2)	0,7550 (2)	0,5266 (1)	3,88 (3)	
C(9)	0,6549 (2)	0,6848 (2)	0,6126 (1)	3,96 (3)	
O(10)	0,7264 (2)	0,7458 (1)	0,69191 (7)	4,90 (3)	
C(11)	0,7028 (3)	0,6631 (2)	0,7616 (1)	5,53 (4)	
C(12)	0,6216 (3)	0,5557 (2)	0,7280 (1)	5,55 (4)	
C(13)	0,5913 (3)	0,5679 (2)	0,6315 (1)	4,80 (4)	
O(14)	0,5948 (2)	0,7045 (1)	0,45351 (7)	5,14 (3)	
C(15)	0,6329 (3)	1,0452 (2)	0,2185 (1)	5,51 (4)	
C(16)	0,8775 (3)	1,3044 (2)	0,4964 (1)	5,32 (4)	

Tableau 2. Longueurs (Å), angles des liaisons (°) et ecarts-type

N(1)-C(2)	1,334 (2)	N(7)C(8)	1,360 (2)
N(1)-C(6)	1,338 (2)	C(8)-C(9)	1,465 (2)
C(2) - C(3)	1,388 (2)	C(8)-O(14)	1,219 (2)
C(2)—N(7)	1,403 (2)	C(9)-O(10)	1,371 (2)
C(3)-C(4)	1,384 (2)	C(9)-C(13)	1,345 (2)
C(4) - C(5)	1,384 (2)	O(10)-C(11)	1,373 (2)
C(4)-C(15)	1,505 (2)	C(11)-C(12)	1,327 (3)
C(5)-C(6)	1,385 (2)	C(12)-C(13)	1,420 (3)
C(6)-C(16)	1,496 (2)		
C(2)—N(1)—C(6)	117,7 (1)	C(2)—N(7)—C(8)	129,8 (1)
N(1)-C(2)-C(3)	124,1 (1)	N(7)—C(8)—C(9)	114,2 (1)
N(1)C(2)-N(7)	111,7 (1)	N(7)-C(8)-O(14)	124,6 (1)
C(3)C(2)N(7)	124,1(1)	C(9)C(8)O(14)	121,3 (1)
C(2)C(3)C(4)	117,9 (1)	C(8)C(9)O(10)	118,1 (1)
C(3)—C(4)—C(5)	118,2 (1)	C(8)-C(9)-C(13)	131,8 (1)
C(3) - C(4) - C(15)	120,9 (1)	O(10)-C(9)-C(13)	110,0 (1)
C(5)-C(4)-C(15)	120,9 (2)	C(9)-O(10)-C(11)	106,2 (1)
C(4)—C(5)—C(6)	120,2 (2)	O(10)-C(11)-C(12)	110,1 (2)
N(1)—C(6)—C(5)	121,8 (1)	C(11)C(12)C(13)	107,4 (2)
N(1)-C(6)-C(16)	116,4 (1)	C(9)C(13)C(12)	106,3 (2)
C(5) - C(6) - C(16)	121,8 (2)		

Fig. 1. Dessin de la molécule et numéros attribués à ses atomes. Les traits les plus fins correspondent aux liaisons hydrogène.

Fig. 2. Vue stéréoscopique de la structure. Les traits en pointillé représentent les liaisons hydrogène intermoléculaires.

^{*} Les listes des facteurs de structure observés et calculés, des coefficients d'agitation thermique des atomes 'lourds', des coordonnées des atomes d'hydrogène, des distances C-H et N-H, des distances des atomes aux plans moyens et des distances interatomiques intermoléculaires ont été déposées aux archives de la British Library Document Supply Centre (Supplementary Publication No. SUP 54354: 13 pp.). On peut en obtenir des copies en s'adressant à: The Technical Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, Angleterre.

Littérature associée. Structure du N-(4,6-diméthylpyridin-2-yl)benzamide (Rodier, Piessard, Le Baut & Michelet, 1986). Etude spectrale de quelques N-(pyridin-2-yl)benzamides et structure cristalline du N-éthyl-N-(4,6-diméthylpyridin-2-yl)benzamide (Rodier, Piessard, Le Baut & Brion, 1987).

Références

B. A. FRENZ & ASSOCIATES, INC. (1982). Structure Determination Package. College Station, Texas, EU, et Enraf-Nonius, Pays-Bas.

CENSE, J. M. (1989). Tetrahedron Comp. Methodol. 2, 65-71.

DEWAR, J. S., ZOEBISCH, E. G., HEALY, E. F. & STEWART, J. P. P. (1985). J. Am. Chem. Soc. 107, 3902-3909.

- JOHNSON, C. K. (1976). ORTEPII. Rapport ORNL-5138. Oak Ridge National Laboratory, Tennessee, EU.
- MAIN, P., FISKE, S. J., HULL, S. E., LESSINGER, L., GERMAIN, G., DECLERCQ, J.-P. & WOOLFSON, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univ. de York, Angleterre, et de Louvain, Belgique.
- RODIER, N., PIESSARD, S., LE BAUT, G. & BRION, J. D. (1987). Bull. Soc. Chim. Fr. pp. 250–254.
- RODIER, N., PIESSARD, S., LE BAUT, G. & MICHELET, A. (1986). Bull. Soc. Chim. Fr. pp. 418-422.
- STEWART, J. P. P. (1983). QCPE Bull. No 455. Disponible dans INSIGHT II (Biosym Technologies, 10065 Barnes Canyon Road, San Diego, CA 92121, EU).

Acta Cryst. (1991). C47, 2690–2693

Structures du 11-Formyl-5-(4-méthylpipérazin-1-yl)-11*H*-pyrido-[2,3-*b*][1,5]benzodiazépine et du 6-(4-Méthylpipérazin-1-yl)-11-méthyl-11*H*-pyrido-[2,3-*b*][1,4]benzodiazépine

PAR L. DUPONT, S. ENGLEBERT ET O. DIDEBERG

Laboratoire de Cristallographie, Institut de Physique B5, Université de Liège, Sart Tilman, B-4000 Liège, Belgique

ET J. F. LIÉGEOIS ET J. DELARGE

Laboratoire de Chimie Pharmaceutique, Institut de Pharmacie F1, Université de Liège, rue Fusch 3-5, B-4000 Liège, Belgique

(Reçu le 27 mai 1991, accepté le 14 juin 1991)

Abstract. (I) $C_{18}H_{19}N_5O$, $M_r = 321.4$, m.p. = 467 K, monoclinic, $P2_1/n$, a = 12.624 (4), b = 10.166 (5), c =12.915 (4) Å, $\beta = 99.78$ (4)°, V = 1633.3 (1) Å³, Z =4, $D_x = 1.307 \text{ g cm}^{-3}$, $\lambda(\text{Cu } K\overline{\alpha}) = 1.5418 \text{ Å}$, $\mu = 6.03 \text{ cm}^{-1}$, F(000) = 680, T = 293 (1) K, R = 0.047for 1613 independent reflections. (II) $C_{18}H_{21}N_5$, M_r = 307.4, m.p. = 419 K, monoclinic, $P2_1/n$, a =9.285 (1), b = 11.250 (1), c = 15.376 (3) Å, 91.24 (1)°, V = 1605.9 (1) Å³, Z = 4, $\beta =$ $D_x =$ 1.271 g cm^{-3} , λ (Mo $K\overline{\alpha}$) = 0.7107 Å, μ = 0.45 cm⁻¹. F(000) = 656, T = 293 (1) K, R = 0.069 for 1525 independent reflections. In both compounds, the diazepine ring is in a boat conformation. The dihedral angles between the two aromatic rings are 115.1 (1) and 115.0 (1)° respectively. The distances between the N (methylpiperazine) atom and the centres of the two aromatic rings are respectively 6.107 (4) (I), 5.934 (4) (II) and 7.768 (4) (I), 7.726 (4) (II) Å. There is no hydrogen bonding.

Partie expérimentale. Cristal du composé (I) incolore $0,11 \times 0,22 \times 0,38$ mm obtenu par cristallisation

de 36 réflexions telles que $5,5 \le \theta \le 31,1^\circ$. Diffractomètre Siemens. Balayage ω , $3.0 \le 2\theta \le 110.0^\circ$. $-13 \le h \le 13$, $0 \le k \le 10$, $0 \le l \le 13$. Réflexions de contrôle de l'intensité: $7682 \le F_o(\overline{1}36) \le 8052, 1828 \le$ $F_o(701) \le 1991$. 2467 réflexions mesurées, 2045 réflexions uniques ($R_{int} = 0,02$). Corrections de Lorentz, de polarisation, de décroissance et d'absorption [par méthode semi-empirique, analogue à celle de North, Phillips & Mathews (1968)]. Facteurs de transmission minimum et maximum: 0,88 et 0,99. Structure déterminée par méthode directe avec SHELXS86 (Sheldrick, 1986). Affinement des paramètres de position et des facteurs de température anisotrope des atomes C, N et O basé sur F (matrice entière) avec SHELX76 (Sheldrick, 76). Facteurs de diffusion sont ceux de SHELX. Les H placés suivant une géométrie standard. Facteur de température B global affiné pour les H = 4,9 (2) Å², sauf ceux du méthyl dont le B global affiné = 6,5(5) Å². Facteur R final = 0.047 pour 1613 réflexions observées $|I\rangle$

dans un mélange méthanol (50% en volume)-

acétone. Paramètres de la maille déterminés à partir

0108-2701/91/122690-04\$03.00

© 1991 International Union of Crystallography